30

Mar
2021
Posted By : Qindeel/ 37 0

Беспорядочность перемещения таких частиц объясняется случайным характером передачи импульсов от молекул газа частице с разных сторон. Броуновское движение оказывается тем заметнее, чем меньше частица и чем выше температура системы. Зависимость от температуры свидетельствует о том, что скорость хаотического движения молекул возрастает с увеличением температуры, именно поэтому его и называют основные виды инвестиций тепловым движением. Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется па́ром. Реальный газ представляет собой высоко перегретый пар, свойства которого незначительно отличаются от идеального газа. В связи с этим в термодинамическом описании паров и реальных газов следует различать только два состояния — насыщенные пары (двухфазовые системы) и перегретые пары — (однофазовые газообразные состояния)[3].

Важнейшей чертой теплового движения молекул газа — это беспорядочность (хаотичность) движения. Экспериментальным доказательством непрерывного характера движения молекул является диффузия и броуновское движение. Основной особенностью газа является то, что он заполняет всё доступное пространство, не образуя поверхности. Газ — изотропное вещество, то есть его свойства не зависят от направления. В случаях, когда силами тяготения можно пренебречь или они уравновешены другими силами, давление во всех точках газа одинаково (см. Закон Паскаля).

Закон касается слабо сжатых газов (например, газов под атмосферным давлением). Закон Авогадро означает, что давление газа при определённой температуре зависит только от числа молекул в единице объёма газа, но не зависит от того, какие это молекулы. Если бы можно было наблюдать газ под мощным микроскопом, можно было бы увидеть набор частиц (молекул, атомов и т. д.) без определённой формы и объёма, которые находятся в хаотическом движении. Эти нейтральные частицы газа изменяют направление только тогда, когда они сталкиваются с фильм про трейдинг другими частицами или стенками ёмкости. Если предположить, что эти взаимодействия (удары) абсолютно упругие, это вещество превращается из реального в идеальный газ. Эта доля с микроскопической точки зрения газа описывается молекулярно-кинетической теорией.

Сжимаемость

Можно уменьшить атмосферное давление поднятием на высоту, либо вакуумированием. Силы межмолекулярного взаимодействия — короткодействующие, то есть проявляются на расстояниях R ≤ 10−9 м и быстро уменьшаются с увеличением расстояния. Ломоносов употреблял термин «упругие жидкости», но он не прижился.

Кинетическая теория

В планетарном масштабе газ в атмосфере удерживается гравитацией и не образует свободной поверхности. В отличие от жидкостей, кинематическая вязкость газов с ростом температуры растёт, хотя для динамической вязкости зависимость менее выражена. Существуют газы, которые при охлаждении переходят в твёрдое тело, минуя жидкую фазу. Превращение жидкости в газ называется испарением, а непосредственное превращение твёрдого тела в газ — сублимацией.

Физические свойства

Теория объясняет, как газовая система реагирует на внешние воздействия. Например, когда газ нагревается от абсолютного нуля, при котором его (классические) частицы абсолютно неподвижны, скорость частиц возрастает с ростом его температуры. Это приводит к большему числу их столкновений со стенками сосуда в единицу времени за счёт более высокой скорости. По мере роста числа столкновений возрастает их воздействие на стенки сосуда, пропорционально которому возрастает давление. Газ имеет высокую сжимаемость — при увеличении давления возрастает его плотность. При сжатии газ может перейти в жидкость, если его температура ниже так называемой критической температуры.

Сосуществование с жидкостью

  1. Успешное объяснение газовых законов, исходя из положений кинетической теории, стало одним из факторов подтверждения атомарного строения веществ в природе.
  2. Теплопроводность газов — явление направленного переноса тепловой энергии за счёт столкновения частиц газа без переноса вещества.
  3. В отличие от жидкостей, газы не имеют фиксированного объёма, а стремятся заполнить весь доступный объём (например, сосуда).
  4. Кинетическая теория объясняет термодинамические явления, исходя из атомистических представлений.

Поэтому было разработано большое число точных уравнений состояния для конкретных газов в диапазоне определённых температур и давлений. Математические модели газа, наиболее часто используемые — это модели «идеального газа» и «реального газа». Кинетическая теория даёт представление о макроскопических свойствах газов, рассматривая их молекулярное строение и движение молекул. Этот закон был открыт на основе опытов по химии итальянским учёным Амедео Авогадро в 1811 году.

Газ, или газообра́зное состоя́ние (от нидерл. gas, восходит к др.-греч. χάος (háos) — букв. Хаос[1]) — одно из четырёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими бесплатные программы для кластерного анализа его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения[2].

Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно сжижить только при температуре меньшей, чем 4,2 К. Под уравнением состояния (для газов) подразумевают математическую модель, которая используется для приближённого описания или моделирования свойств газа. В настоящее время не существует единого уравнения состояния, которое бы точно прогнозировало свойства всех газов при любых условиях.

Успешное объяснение газовых законов, исходя из положений кинетической теории, стало одним из факторов подтверждения атомарного строения веществ в природе. В современной физике молекулярно-кинетическая теория рассматривается как составная часть статистической механики. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой по барометрической формуле. Соответственно, в поле сил тяжести неоднородной становится смесь газов. Тяжёлые газы имеют тенденцию оседать ниже, а более лёгкие — подниматься вверх. В поле тяготения на любое тело, погружённое в газ, действует Архимедова сила[7], которую используют для полёта воздушных шаров и других воздухоплавательных аппаратов, заполненные лёгкими газами или горячим воздухом.

При низкой температуре газ также может проводить ток, если мощность его внутреннего электрического поля превышает некоторое пороговое значение. Пороговое значение в этом случае — достижение электроном под действием электрического поля достаточной кинетической энергии, необходимой для ионизации атома. Далее электроны снова разгоняются электрическим полем для ионизации и ионизируют два атома и т. В конечном итоге все свободные электроны достигнут позитивного электрода, позитивные ионы — негативного электрода. Данный тип ионизации распространён преимущественно в промышленности.

Установлено, что скорость протекания процесса диффузии зависит от рода веществ и температуры. В определённом диапазоне температур и давлений газ и жидкость одного и того же вещества могут сосуществовать в виде равновесной двухфазовой системы. Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма, а стремятся заполнить весь доступный объём (например, сосуда).

Реальный газ — это газ, между молекулами которого действуют силы межмолекулярного взаимодействия. Теплопроводность газов — явление направленного переноса тепловой энергии за счёт столкновения частиц газа без переноса вещества. Диффузия — это явление самопроизвольного проникновения молекул одного вещества в другое. В результате взаимной диффузии веществ происходит постепенное выравнивание их концентрации во всех областях занимаемого ими объёма.

Leave your comment

Please enter comment.
Please enter your name.
Please enter your email address.
Please enter a valid email address.